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A. Methodology

A.1 Model Solution

We derive the rational expectations equilibrium of our model using the TL method. The

model’s equilibrium conditions are written as a vector-valued function, f(·), containing

(εt, st):

E[f(εt+1, st+1, εt, st)|Ωt] = 0,

where εt is a vector of exogenous variables, st is a vector of endogenous variables, and Ωt

is an information set of agents. In our study, we set εt =
(
εat , ε

b
t , ε

r
t

)′
, st = (yt, yt−1, ct,

πt,y
∗
t ,y
∗
t−1, Rt, R

∗
t , r
∗
t , µ

a
t , z

b
t

)′
where yt ≡ Yt/At, ct ≡ Ct/At, and y∗t ≡ Y ∗t /At.

Given function f(·), we can obtain a model’s decision rules (or policy functions), Φ(·),
as a function of the state vector. The TL method locally approximates the time-invariant

policy function at each node in the state space, zt ≡
(
µat , z

b
t , ε

r
t , yt−1, R

∗
t−1
)′

, that is,

Φ(zt) ' Φ̂(zt).

We solve the rational expectations equilibrium by substituting (yt, y
∗
t , πt)

′ = Φ(zt) into

the future variables of the function f(·). We discretize five grid points on each of the

continuous state variables, which implies 3, 125(= 55) nodes in total.

The policy function iteration algorithm takes the following steps. Let i ∈ {0, · · · , I}
denote the iterations of the algorithm and n ∈ {1, · · · , N} denote the nodes of the policy

function, Φ(zt).

1. For i = 0, we make an initial conjecture of the policy function, Φ0(zt), from the log-

linearized model without the ZLB. To do so, we use Sims’ (2002) gensys algorithm.
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2. For iteration i ∈ {1, · · · , I} and node n ∈ {1, · · · , N}, we execute the following proce-

dures.

(a) Solve for endogenous variables
(
ct, Rt, R

∗
t , r
∗, µat , z

b
t

)′
, given

(
yt−1, y

∗
t−1, πt−1

)′
=

Φ(zt−1) under the ZLB.

(b) Approximate the future variables { Et(yt+1), Et(y∗t+1), Et(πt+1)} using a piecewise

linear interpolation of the policy function Φi−1(zt). Then, substitute the future

variables into Et[f(·)|Ωt], where we employ Gauss-Hermite integration to approx-

imate the conditional expectations with three nodes per shock based on Gust et

al. (2017).

(c) Use the nonlinear solver, Sims’ csolve, to find the policy function, Φi(zt), which

minimizes the errors in intertemporal equations, that is, E[f(·)|Ωt] = 0.

3. Define maxdist = max( |yin − yi−1n |, |y∗,in − y∗,i−1n |, |πin − πi−1n |). Repeat Step 2 until the

policy function converges, say, to maxdist < 10−4, for all nodes, n.

A.2 Estimation

To obtain draws from the posterior distribution of the parameters, θ, in a nonlinear DSGE

model, we use the SMC2 sampler combined with the particle filter instead of popular methods

such as the PFMH algorithm. Because the PFMH algorithm cannot be parallelized when

generating draws, they take a long time. By contrast, the SMC2 method and particle filter

can be used easily and may also more accurately approximate the posterior distribution. We

employ a widely used particle filter, the so-called bootstrap particle filter, following Gust et

al. (2017).

We explain the algorithms of the SMC2 method and bootstrap particle filter following

Herbst and Schorfheide (2015) and Fernández-Villaverde, Rubio-Ramirez, and Schorfheide

(2016).

A.2.1 Algorithm of the Sequential Monte Carlo Squared

Suppose that φn for n = 0, · · · , Nφ is a sequence that slowly increases from zero to one. We

define a sequence of bridge distributions, {πn(θ)}Nφn=0, that converge to the target posterior

distribution for n = Nφ and φn = 1 as

πn(θ) =
[p(Y|θ)]φnp(θ)∫
[p(Y|θ)]φnp(θ)dθ

, for n = 0, · · · , Nφ, φn ↑ 1,

where p(θ) and p(Y|θ) are the prior density and likelihood function, respectively. We adopt

the likelihood tempering approach that generates the bridge distributions, {πn(θ)}Nφn=0, by

taking the power transformation of p(Y|θ) with parameter φn (i.e., [p(Y|θ)]φn).
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The SMC2 method with likelihood tempering has the following steps. Let i ∈ {1, · · · , Nθ}
denote the particles of the parameter sets, θi, and n ∈ {0, · · · , Nφ} denote the stage of the

algorithm. Herbst and Schorfheide (2015) recommend a convex tempering schedule in the

form of φn = (n/Nφ)λ with λ = 2 for a small-scale DSGE model.

1. Initialization

(a) Set the initial stage as n = 0 and draw the initial particles of parameters θi0 from

the prior distribution p(θ).

(b) Set the weight of each particle in the initial stage as W i
0 = 1 for i = 1, · · · , Nθ.

Then, for stage n ∈ {1, · · · , Nφ} and particle i ∈ {1, · · · , Nθ}, we repeat Steps 2 to 4.

2. Correction. Calculate the normalized weight, W̃ i
n, for each particle as

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

for i = 1, · · · , Nθ,

where w̃it is an incremental weight derived from

w̃in = [p(Y|θin−1)]φn−φn−1 ,

and the likelihood, p̂(Y|θ), is approximated from the particle filter, as explained in the

next subsection.

The correction step is a classic importance sampling step in which particle weights are

updated to reflect the stage n distribution, πn(θ). Because this step does not change

the particle value, we can skip this step only by calculating the power transformation

of p(Y|θ) with parameter φn.

3. Selection (Resampling).

(a) Calculate an effective particle sample size, ÊSSn, which is defined as

ÊSSn = Nθ/

(
1

Nθ

Nθ∑
i=1

(W̃ i
n)2

)
.

(b) If ÊSSn < Nθ/2, then resample particles {θ̂n}Nθi=1 by multinomial resampling and

set W i
n = 1.

(c) Otherwise, let θ̂in = θin−1 and W i
n = W̃ i

n.

4. Mutation. Propagate the particles {θ̂in, W i
n} via the random walk MH algorithm with

the proposal density,

ϑ|θ̂n
i
∼ N

(
θ̂n

i
, c2nΣ

(
θ̂n

))
,
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where N(·) is the nominal distribution and Σ
(
θ̂n

)
denotes the covariance matrix of

parameter θ̂n for all the particles i ∈ {1, · · · , Nθ} in the n-th stage. To keep the

acceptance rate around 25%, we set a scaling factor cn for n > 2 as

cn = cn−1f(An−1),

where An represents the acceptance rate in the mutation step in the n-th stage and

function f(x) is given by

f(x) = 0.95 + 0.10
e16(x−0.25)

1 + e16(x−0.25)
.

5. For the final stage of n = Nφ, calculate the final importance sampling approximation

of the posterior estimator, Eπ[h(θ)], as

hNφ,Nθ =

Nθ∑
i=1

h(θiNφ)W i
Nφ
.

In the final stage, the approximated marginal likelihood of the model is also obtained

as a by-product. It can be shown that

PSMC(Y ) =

Nφ∏
n=1

(
1

Nθ

Nθ∑
i=1

w̃inW
i
n−1

)

converges almost surely to p(Y ) as the number of particles Nθ →∞.

A.2.2 Algorithm of the Particle Filter

Suppose that a state-space representation for the nonlinear DSGE model consists of

Yt = Ψ(st, θ) + ut, ut ∼ N(0, Σu),

st = Φ(st−1, εt, θ), εt ∼ N(0, Σε),

where Yt and st denote the observable and state variables, respectively. In our study, we

set Yt = (log(yt/yt−1), πt, Rt)
′ and st =

(
yt, yt−1, ct, πt, y

∗
t , y

∗
−1, Rt, R

∗
t , r

∗
t , µ

a
t , z

b
t

)′
. A

measurement error vector, ut, and an exogenous shock vector, εt =
(
εat , ε

b
t , ε

r
t

)′
, follow a

normal distribution with covariance matrixes Σu and Σε, respectively. The nonlinear policy

function Φ(st−1, εt, θ) is derived in Appendix A.1, while the function Ψ(st, θ) represents the

linkage between Yt and st.

The particle filter algorithm is as follows. Let j ∈ {0, · · · , NS} denote the index for the

particles of the state variables and exogenous shocks.
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1. For period t = 0, draw the NS initial particles of the state variables in period 0, say

sj0|0, from sj0|0 = Φ(s, ε0, θ) with ε0 ∼ N(0, Σε), where s = Φ(s, 0, θ).

2. For period t ∈ {1, · · · , T} and particle j ∈ {1, · · · , NS}, take the following three steps.

(a) Forecasting the state variables: sjt|t−1. Generate NS particles of the shock vector

εjt from N(0, Σε). Using the nonlinear policy function, we obtain NS particles of

the forecasts of the state variables corresponding to the shocks generated above:

sjt|t−1 = Φ(sjt−1|t−1, ε
j
t , θ).

(b) Forecasting the observable variables. Calculate the approximated predictive den-

sity of yobst given by

p(Yt|Y1:t−1, θ) '
1

NS

NS∑
j=1

wjt ,

where wjt is the normal predictive density of particle j measured from Ψ(sjt|t−1, θ)

and the covariance matrix of the measurement error Σu in period t, say,

wjt = (2π)−Ny/2|Σu|−1/2exp

{
−1

2
(Yt −Ψ(sjt|t−1, θ))

′Σ−1u (Yt −Ψ(sjt|t−1, θ))

}
,

where Ny is the dimension of yt.

(c) Updating the state variables: sjt|t. Resample NS particles of the state variables

from a multinomial distribution. That is,

sjt|t = resample out of (s1t|t−1, · · · s
j
t|t−1, · · · s

NS
t|t−1) with probabilty (wjt/Σw

j
t ).

3. For the final period t = T , collect all the predictive densities of yt from periods 1 to T

calculated above. Using these densities, the log likelihood of the model is approximated

as

log p(Y1:t|θ) '
T∑
t=1

log

(
1

NS

NS∑
j=1

wjt

)
.

B. Comparisons of Notional Interest Rates

Figure 1 shows developments in the notional interest rate R∗t−1 in the Exit Condition Model,

the Notional Rate Model, and the Nominal Rate Model. Of these models, only the Notional

Rate Model gives the notional interest rate a role in lowering expectations for future interest

rates, because it influences the interest rate in the next period through inertia. The figure

shows that the notional interest rate in the Notional Rate Model is the lowest.
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C. Duration of the Zero-Rate Policy Based on the Shadow-

Rate Model

Using the estimation results of Ueno (2017), we calculate the expected duration being at

the ZLB. Specifically, we use the fixed extended and variable extended models in Ueno

(2017). Considering that these models assume a nonstationary I(1) process for interest

rates, we generate a relatively longer sequence of interest rates, as long as 107, to calculate

the expected duration. Figure 2 shows the expected duration of being at the ZLB.

D. Impulse Response Functions

Figures 3, 4, and 5 show the IRFs given the monetary policy shock, the discount factor

(preference) shock, and the technology shock, respectively. The sizes of the shocks are

0.025%, 0.15%, and 0.05%, respectively. For each type of shock, we calculate the IRFs to

both positive and negative shocks. Furthermore, we show the IRFs in different models: the

Exit Condition Model, the Notional Rate Model, the Nominal Rate Model, and the Model

without the ZLB. The IRFs are conditional on states in two historical periods, 1985:1Q and

2013:2Q. The latter is a period in which the ZLB constrains the economy and πt is slightly

below the estimated exit condition π.

Monetary policy shock

Figure 3 shows that, in 1985:1Q, the IRFs are symmetric to the sign of the monetary policy

shock irrespective of the models. In 2013:2Q, the IRFs are asymmetric except for the Model

without the ZLB. The positive monetary shock yields a bigger decrease in πt than the

negative monetary policy shock increases πt. Moreover, the positive monetary policy shock

has a larger negative effect on πt in the Nominal Rate Model than in the Notional Rate

Model. In the former model, the experience of prolonged recessions does not tie the hand

of the central bank and, hence, the positive monetary policy shock leads to an immediate

increase in Rt, which decreases πt. In response to the negative monetary policy shock, πt
increases in the Notional Rate Model, because it incorporates a promise to continue the

zero-rate policy in the future. The monetary policy in period t depends on R∗t−1, which can

take negative values. The negative monetary policy shock in period t decreases R∗t , serving

to lower future nominal interest rates. This promise increases πt in the current period.

Discount factor (preference) shock

Figure 4 shows that, in 1985:1Q, the IRFs are symmetric to the sign of the shock, and their

patterns are almost the same in the four models. A positive (negative) shock to Zb
t increases
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(decreases) the weight on the current period’s utility, thereby increasing (decreasing) yt, πt,

Rt, and R∗t in the current period.

It is important to emphasize that the IRFs in 2013:2Q are not much different from those

in 1985:1Q. The ZLB constrains the economy and Rt hardly decreases in response to the

negative shock in the three models that take account of the ZLB. However, this inaction of Rt

hardly influences πt. The only difference is that πt converges to zero a little more stagnantly

in response to the negative shock than it does in response to the positive shock.

This result is in a sharp contrast to those of existing studies that point out significant

changes in policy implications due to the ZLB, for example, an increase in government

purchase multiplier or a fall in employment by the cut in the labor tax (see Eggertsson

2011). However, our result is in line with that of Boneva, Braun, and Waki (2016), who

find that implications for fiscal policy at the ZLB are not very different when they employ

a nonlinear solution method, instead of a loglinearized solution method with the ZLB.

Technology shock

Figure 5 shows the IRFs to the technology shock. In 1985:1Q, the IRFs are symmetric to the

sign of the shock. A positive shock to µat increases πt in period 1 slightly, but then decreases

πt below zero from period 2, mainly because of the consumption habit. To understand this

change, let us look at the log-linearized equations described by equations (11) to (14) in

the main text. On the one hand, equation (13) shows that the positive shock increases r∗t ,

which contributes to increasing yt−y∗t and πt through equations (11) and (12). On the other

hand, equation (14) suggests that the positive shock decreases the natural level of output

defined by y∗t = Y ∗t /At owing to the consumption habit (h > 0), which functions to decrease

yt with a lag. Thus, yt − y∗t is expected to fall below zero, which decreases πt. In period 1,

the former effect dominates, yielding a slight increase in yt − y∗t and πt. From period 2, the

latter effect dominates and both yt− y∗t and πt decrease below zero. Accordingly, Rt and R∗t
decrease. We confirm that the positive shock increases yt − y∗t and πt rather than decreases

them, when there is no habit formation (h = 0).

In 2013:2Q, when the ZLB constrains the economy, the IRFs of Rt are asymmetric, but

those of πt are almost symmetric and hardly different from those in 1985:1Q. Although the

ZLB prevents Rt from decreasing in response to the positive technology shock, this does

not decrease πt much, except for a slightly slower convergence. This is consistent with the

result of the IRFs to the discount factor shock. The ZLB itself also does not change the

implications for the supply-side shock.
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E. Comparisons of Moments

In this section, we examine the validity of the model by comparing the moments of key

economic variables with data. In particular, we look at hours worked (lt), real wage (Wt),

and the real labor cost (Wtlt), which are not used for the estimation. The data for lt and

Wt are extended from those used in Sugo and Ueda (2008): they are from the Ministry

of Health, Labour and Welfare “Monthly Labor Survey.” The effect of jitan, a decrease in

the number of statutory workdays per week, is adjusted. Considering the non-stationarity,

we detrend Yt, Wt, and Wtlt using the HP filter with λ = 1, 600. As for the moments, we

calculate standard deviations and correlation coefficients.

Table 1 shows the results. First, regarding standard deviations, we express them by a

ratio to those of Yt. The estimated standard deviations of lt based on the Exit Condition

Model are higher than those of data, but of the same order. However, the Exit Condition

Model yields standard deviations of Wt and Wtlt larger by one order of magnitude than the

actual data. Because our model does not embed frictions in the labor market (e.g., wage

stickiness), the real wage is adjusted in an excessively volatile manner.

Next, we investigate correlation coefficients between the variables associated with output

(Yt or ∆logYt) and the variables associated with labor. The correlation coefficient concerning

lt is almost the same between the data and the Exit Condition Model. However, again,

the Exit Condition Model performs very poorly in explaining the correlation coefficient

concerning Wt. For example, the model suggests +0.7 for the correlation coefficient between

Yt and Wt, while it is almost zero for the data. Nevertheless, the correlation coefficient

concerning their product Wtlt is almost the same between the data and the Exit Condition

Model; the correlation coefficient between Yt and Wtlt is around +0.6.

The other models, including that without the ZLB, perform no better than the Exit

Condition Model does. In particular, the Linear Model, which neglects all nonlinearity,

yields even larger standard deviations for the variables associated with labor. However,

there is no significant difference among the models that incorporate the ZLB.

F. Further Estimation Results

Table 2 shows further estimation results. We estimate the model without the ZLB nonlinearly

but ignoring the ZLB. This is estimated using the same approach as in our benchmark model,

and thus the computational costs are equally high.

Next, we check the robustness of our estimation using an alternative measure of output,

that is, the output gap. We estimate the same model using either the output gap instead of

growth of real GDP or using both the output gap and growth of real GDP. Table 2 shows

that the parameter estimates are almost the same.
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Table 1: Comparisons of Moments

(1) Standard deviations relative to σ(Y )

σ(l) σ(W ) σ(Wl)

Data 0.45 0.36 0.48

Exit condition model 0.76 5.27 6.02

Notional rate model 0.78 5.18 5.94

Nominal rate model 0.89 5.35 6.22

Model w/o ZLB 0.95 4.60 5.53

Linear model 1.30 6.37 7.65

(2) Correlation coefficients

Y, l Y,W Y,Wl dY, l dY,W dY,Wl

Data 0.69 -0.05 0.60 0.20 0.07 0.24

Exit condition model 0.51 0.69 0.67 0.33 0.47 0.45

Notional rate model 0.43 0.64 0.62 0.23 0.41 0.39

Nominal rate model 0.49 0.66 0.64 0.34 0.46 0.45

Model w/o ZLB 0.56 0.72 0.69 0.43 0.50 0.49

Linear model 0.45 0.52 0.51 -0.15 0.02 -0.01

Note: Output (Y ), real wage (W ), and real labor cost (Wl) are detrended by the HP filter with λ = 1, 600,

and dY represents the growth rate of output (∆logY ).
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Table 2: Further Estimation Results

Benchmark Model w/o ZLB Output GAP Output Growth and Gap

Mean (95% low, high) Mean (95% low, high) Mean (95% low, high) Mean (95% low, high)

Parameter

σ 1.548 (1.507, 1.621) 1.108 (1.069, 1.138) 1.709 (1.148, 1.997) 1.616 (1.301, 1.765)

h 0.641 (0.602, 0.665) 0.317 (0.311, 0.352) 0.507 (0.445, 0.629) 0.597 (0.575, 0.655)

γa -0.046 (-0.055, -0.03) 0.020 (0.019, 0.024) 0.044 (-0.053, 0.076) -0.012 (-0.042, 0.009)

ω 3.922 (3.833, 4.086) 3.748 (3.539, 3.768) 4.051 (3.569, 4.293) 3.962 (3.697, 4.091)

κ 0.051 (0.05, 0.053) 0.049 (0.046, 0.049) 0.044 (0.04, 0.053) 0.048 (0.046, 0.051)

r∗ 0.054 (0.039, 0.08) 0.147 (0.146, 0.151) 0.205 (0.061, 0.269) 0.105 (0.053, 0.14)

π∗ 0.325 (0.292, 0.348) 0.251 (0.236, 0.253) 0.283 (0.216, 0.346) 0.186 (0.161, 0.198)

π̄ 0.339 (0.3, 0.366) – – 0.297 (0.22, 0.376) 0.216 (0.188, 0.23)

ρr 0.394 (0.268, 0.483) 0.629 (0.614, 0.732) 0.477 (0.219, 0.592) 0.540 (0.391, 0.605)

ψπ 2.070 (1.872, 2.251) 1.880 (1.866, 1.984) 2.131 (1.665, 2.396) 1.907 (1.748, 2.168)

ψy 0.137 (0.132, 0.142) 0.078 (0.076, 0.087) 0.127 (0.111, 0.172) 0.098 (0.087, 0.13)

ρa 0.437 (0.403, 0.474) 0.204 (0.164, 0.212) 0.737 (0.516, 0.839) 0.334 (0.277, 0.443)

ρb 0.163 (0.094, 0.278) 0.355 (0.209, 0.377) 0.484 (0.377, 0.65) 0.722 (0.673, 0.827)

σa 1.567 (1.49, 1.674) 1.484 (1.343, 1.584) 1.664 (0.995, 3.159) 1.833 (1.592, 2.131)

σb 4.407 (4.047, 4.685) 2.781 (2.745, 2.968) 2.781 (2.234, 3.176) 2.781 (3.026, 4.627)

σr 1.849 (1.773, 1.966) 1.547 (1.248, 1.583) 1.438 (0.891, 2.162) 1.151 (0.993, 1.436)

Likelihood

-204.722 -467.963 -232.938 -412.533
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Figure 1: Notional Nominal Interest Rate R∗t
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Figure 2: Duration of Being at the ZLB
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Figure 3: Impulse Responses to a Monetary Policy Shock
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Note: “Pos” and “Neg” represent positive (tightening) and negative (easing) monetary policy shocks, respectively.
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Figure 4: Impulse Responses to a Discount Factor Shock
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Note: “Pos” and “Neg” represent positive and negative discount factor shocks, respectively.
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Figure 5: Impulse Responses to a Technology Shock
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